Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38376782

ABSTRACT

Gas-permeable membrane (GPM) technology is gaining interest to recover nitrogen from residual effluents due to its effectiveness, simple operation and capacity of producing a nutrient rich product with fertilising value. In this study, a GPM contactor was used at 25 °C to recover total ammoniacal nitrogen (TAN) from swine slurry as a concentrated (NH4)2SO4 solution. Firstly, a synthetic solution was tested on a wide pH range (6-12). Results showed that the ammonia mass transfer constants (Km) increased from 7.9·10-9 to 1.2·10-6 m/s as the pH increased. The reagent consumption to control the pH per mole nitrogen recovered had a minimum at pH 9, which showed a Km value of 3.0·10-7 m/s. Secondly, various pH control strategies were tested using swine slurry, including (i) no pH control, (ii) pH control at 8.5, 9.0 and 10.0, and (iii) an initial spike of the NaOH equivalent to the required to control the pH at 9. The test without pH control reached a TAN recovery of around 60%, which could be an interesting strategy when high nitrogen recoveries or short operating times are not required. The pH control at 9 stood out as the most favourable operating condition due to its high Km and lower reagent consumption. Thirdly, several feed-to-trapping volume ratios ranging from 1:1 to 15:1 were tested using swine slurry at pH 9. These assays revealed that a GPM process with a high feed-to-trapping volume ratio fastens the recovery of 99% of TAN as a high purity (NH4)2SO4 solution containing 40 g N/L.

2.
Front Immunol ; 14: 1211068, 2023.
Article in English | MEDLINE | ID: mdl-37675104

ABSTRACT

In recent years, the central role of cell bioenergetics in regulating immune cell function and fate has been recognized, giving rise to the interest in immunometabolism, an area of research focused on the interaction between metabolic regulation and immune function. Thus, early metabolic changes associated with the polarization of macrophages into pro-inflammatory or pro-resolving cells under different stimuli have been characterized. Tumor-associated macrophages are among the most abundant cells in the tumor microenvironment; however, it exists an unmet need to study the effect of chemotherapeutics on macrophage immunometabolism. Here, we use a systems biology approach that integrates transcriptomics and metabolomics to unveil the immunometabolic effects of trabectedin (TRB) and lurbinectedin (LUR), two DNA-binding agents with proven antitumor activity. Our results show that TRB and LUR activate human macrophages toward a pro-inflammatory phenotype by inducing a specific metabolic rewiring program that includes ROS production, changes in the mitochondrial inner membrane potential, increased pentose phosphate pathway, lactate release, tricarboxylic acids (TCA) cycle, serine and methylglyoxal pathways in human macrophages. Glutamine, aspartate, histidine, and proline intracellular levels are also decreased, whereas oxygen consumption is reduced. The observed immunometabolic changes explain additional antitumor activities of these compounds and open new avenues to design therapeutic interventions that specifically target the immunometabolic landscape in the treatment of cancer.


Subject(s)
Neoplasms , Humans , Trabectedin/pharmacology , Macrophages , Lactic Acid , Tumor Microenvironment
3.
Molecules ; 28(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570699

ABSTRACT

This study focuses on determining the partition coefficients (logP) of a diverse set of 63 molecules in three distinct micellar systems: hexadecyltrimethylammonium bromide (HTAB), sodium cholate (SC), and lithium perfluorooctanesulfonate (LPFOS). The experimental log p values were obtained through micellar electrokinetic chromatography (MEKC) experiments, conducted under controlled pH conditions. Then, Quantum Mechanics (QM) and machine learning approaches are proposed for the prediction of the partition coefficients in these three micellar systems. In the applied QM approach, the experimentally obtained partition coefficients were correlated with the calculated values for the case of the 15 solvent mixtures. Using Density Function Theory (DFT) with the B3LYP functional, we calculated the solvation free energies of 63 molecules in these 16 solvents. The combined data from the experimental partition coefficients in the three micellar formulations showed that the 1-propanol/water combination demonstrated the best agreement with the experimental partition coefficients for the SC and HTAB micelles. Moreover, we employed the SVM approach and k-means clustering based on the generation of the chemical descriptor space. The analysis revealed distinct partitioning patterns associated with specific characteristic features within each identified class. These results indicate the utility of the combined techniques when we want an efficient and quicker model for predicting partition coefficients in diverse micelles.

4.
Polymers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376324

ABSTRACT

This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.

5.
Phys Chem Chem Phys ; 24(31): 18841-18853, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35912724

ABSTRACT

For the discovery of treatments against synucleinopathies, it is necessary to unravel and fully understand the mechanism of fibrillation of proteins involved. Among them, α-synuclein (αS) plays a key role in the development of these diseases through its aggregation into oligomers found in Lewy bodies. However, its structural disorder as an intrinsically disordered protein (IDP) makes its characterization by experimental techniques arduously difficult. Atomistic simulations aim to provide insights into this blank canvas and, fortunately, some studies have already suggested promising mechanisms. Still, it is urgent to consider the IDP features in simulations, so recently a lot of force fields designed to deal with IDPs have been developed. In this study, we have carried out a total of 12 µs simulations of an αS core fragment using a popular ff14SB AMBER force field and the ff14IDPSFF variation that includes a grid-based energy correction map (CMAP) method. The predicted chemical shifts from the simulations and those measured from the αS protein in the NMR solution indicate that ff14IDPSFF reproduces the experimental data more accurately. Moreover, structural analysis exhibits opposite trends between secondary structure propensities. The ff14SB force field preserves the α-helices found in the micelle-bound αS structure, which is used as an initial conformation, while ff14IDPSFF stands out with increased structural disorder and the formation of ß-sheets, which suggests that the IDP-specific force field can capture more suitable conformations representing the possible intermediate states of the fibrillation process.


Subject(s)
Intrinsically Disordered Proteins , alpha-Synuclein/chemistry , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation , Protein Conformation, beta-Strand
6.
Colloids Surf B Biointerfaces ; 217: 112617, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35738075

ABSTRACT

We analyze the conditions of the adsorption of a flexible peptide onto a charged substrate in the 'wrong side' of the isoelectric point (WSIP), i.e. when surface and peptide charges have the same sign. As a model system, we focus on the casein macropeptide (CMP), both in the aglycosylated (aCMP) and fully glycosydated (gCMP) forms. We model the substrate as a uniformly charged plane while CMP is treated as a bead-and-spring model including electrostatic interactions, excluded volume effects and acid/base equilibria. Adsorption coverage, aminoacid charges and concentration profiles are computed by means of Monte Carlo simulations at fixed pH and salt concentration. We conclude that for different reasons the CMP can be adsorbed to both positively and negatively charged surfaces in the WSIP. For negatively charged surfaces, WSIP adsorption is due to the patchy distribution of charges: the peptide is attached to the surface by the positively charged end of the chain, while the repulsion of the surface for the negatively charged tail is screened by the small ions of the added salt. This effect increases with salt concentration. Conversely, a positively charged substrate induces strong charge regulation of the peptide: the acidic groups are deprotonated, and the peptide becomes negatively charged. This effect is stronger at low salt concentrations and it is more intense for gCMP than for aCMP, due to the presence of the additional sialic groups in gCMP.


Subject(s)
Caseins , Peptides , Adsorption , Isoelectric Point , Surface Properties
7.
Polymers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771379

ABSTRACT

(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.

8.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641127

ABSTRACT

An accurate description of the protonation state of amino acids is essential to correctly simulate the conformational space and the mechanisms of action of proteins or other biochemical systems. The pH and the electrochemical environments are decisive factors to define the effective pKa of amino acids and, therefore, the protonation state. However, they are poorly considered in Molecular Dynamics (MD) simulations. To deal with this problem, constant pH Molecular Dynamics (cpHMD) methods have been developed in recent decades, demonstrating a great ability to consider the effective pKa of amino acids within complex structures. Nonetheless, there are very few studies that assess the effect of these approaches in the conformational sampling. In a previous work of our research group, we detected strengths and weaknesses of the discrete cpHMD method implemented in AMBER when simulating capped tripeptides in implicit solvent. Now, we progressed this assessment by including explicit solvation in these peptides. To analyze more in depth the scope of the reported limitations, we also carried out simulations of oligopeptides with distinct positions of the titratable amino acids. Our study showed that the explicit solvation model does not improve the previously noted weaknesses and, furthermore, the separation of the titratable amino acids in oligopeptides can minimize them, thus providing guidelines to improve the conformational sampling in the cpHMD simulations.

9.
Soft Matter ; 17(3): 655-669, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33215185

ABSTRACT

In this work we study the coupling between ionization and conformational properties of two IDPs, histatin-5 and ß-amyloid 42, in the presence of neutral and charged crowders. The latter is modeled to resemble bovine serum albumin (BSA). With this aim, semi-grand canonical Monte Carlo simulations are performed, so that the IDP charge is a dynamic property, undergoing protonation/deprotonation processes. Both ionization properties (global and specific amino acid charge and binding capacitance) and radius of gyration are analyzed in a large range of pH values and salt concentrations. Without crowder agents, the titration curve of histatin-5, a polycation, is salt-dependent while that of ß-amyloid 42, a polyampholyte, is almost unaffected. The salt concentration is found to be particularly relevant at pH values where the protein binding capacitance (directly linked with charge fluctuation) is larger. Upon addition of neutral crowders, charge regulation is observed in histatin-5, while for ß-amyloid 42 this effect is very small. The main mechanism for charge regulation is found to be the effective increase in the ionic strength due to the excluded volume. In the presence of charged crowders, a significant increase in the charge of both IDPs is observed in almost all the pH range. In this case, the IDP charge is altered not only by the increase in the effective ionic strength but also by its direct electrostatic interaction with the charged crowders.


Subject(s)
Intrinsically Disordered Proteins , Macromolecular Substances , Monte Carlo Method , Protein Conformation , Static Electricity
10.
Polymers (Basel) ; 12(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212749

ABSTRACT

The effect of pH on the supramolecular structure of Helicobacter pylori urease was studied by means of molecular dynamics simulations at seven different pHs. Appropriate urease charge distributions were calculated using a semi-grand canonical Monte Carlo (SGCMC) procedure that assigns each residue's charge state depending on the assigned individual pKa obtained by PROPKA. The effect of pH on protein stability has been analyzed through root-mean-square deviation (RMSD), radius of gyration (RG), solvent-accessible surface area (SASA), hydrogen bonds (HB) and salt bridges (SB). Urease catalyses the hydrolysis of urea in 12 active sites that are covered by mobile regions that act like flaps. The mobility of these flaps is increased at acidic pHs. However, extreme acidic conditions cause urease to have the least number of stabilizing interactions. This initiates the process of denaturalization, wherein the four (αß)3 subunits of the global structure ((αß)3)4 of urease start to separate.

11.
Polymers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383731

ABSTRACT

Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.

12.
Polymers (Basel) ; 11(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795443

ABSTRACT

This work addresses the role of charge regulation (CR) and the associated fluctuations in the conformational and mechanical properties of weak polyelectrolytes. Due to CR, changes in the pH-value modifies the average macromolecular charge and conformational equilibria. A second effect is that, for a given average charge per site, fluctuations can alter the intensity of the interactions by means of correlation between binding sites. We investigate both effects by means of Monte Carlo simulations at constant pH-value, so that the charge is a fluctuating quantity. Once the average charge per site is available, we turn off the fluctuations by assigning the same average charge to every site. A constant charge MC simulation is then performed. We make use of a model which accounts for the main fundamental aspects of a linear flexible polyelectrolyte that is, proton binding, angle internal rotation, bond stretching and bending. Steric excluded volume and differentiated treatment for short-range and long-range interactions are also included. This model can be regarded as a kind of "minimal" in the sense that it contains a minimum number of parameters but still preserving the atomistic detail. It is shown that, if fluctuations are activated, gauche state bond probabilities increase and the persistence length decreases, so that the polymer becomes more folded. Macromolecular stretching is also analyzed in presence of CR (the charge depends on the applied force) and without CR (the charge is fixed to the value at zero force). The analysis of the low force scaling behavior concludes that Pincus exponent becomes pH-dependent. Both, with and without CR, a transition from 1/2 at high pH-values (phantom chain) to 3/5 at low pH-values (Pincus regime) is observed. Finally, the intermediate force stretching regime is investigated. It is found that CR induces a moderate influence in the force-extension curves and persistence length (which in this force regime becomes force-dependent). It is thus concluded that the effect of CR on the stretching curves is mainly due to the changes in the average charge at zero force. It is also found that, for the cases studied, the effect of steric excluded volume is almost irrelevant compared to electrostatic interactions.

13.
Soft Matter ; 14(16): 3105-3114, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29620120

ABSTRACT

The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

14.
Polymers (Basel) ; 10(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30960736

ABSTRACT

The classical Rotational Isomeric State (RIS) model, originally proposed by Flory, has been used to rationalize a wide range of physicochemical properties of neutral polymers. However, many weak polyelectrolytes of interest are able to regulate their charge depending on the conformational state of the bonds. Recently, it has been shown that the RIS model can be coupled with the Site Binding (SB) model, for which the ionizable sites can adopt two states: protonated or deprotonated. The resulting combined scheme, the SBRIS model, allows for analyzing ionization and conformational equilibria on the same foot. In the present work, this approach is extended to include pH-dependent electrostatic Long-Range (LR) interactions, ubiquitous in weak polyelectrolytes at moderate and low ionic strengths. With this aim, the original LR interactions are taken into account by defining effective Short-Range (SR) and pH-dependent parameters, such as effective microscopic protonation constants and rotational bond energies. The new parameters are systematically calculated using variational methods. The machinery of statistical mechanics for SR interactions, including the powerful and fast transfer matrix methods, can then be applied. The resulting technique, which we will refer to as the Local Effective Interaction Parameters (LEIP) method, is illustrated with a minimal model of a flexible linear polyelectrolyte containing only one type of rotating bond. LEIP reproduces very well the pH dependence of the degree of protonation and bond probabilities obtained by semi-grand canonical Monte Carlo simulations, where LR interactions are explicitly taken into account. The reduction in the computational time in several orders of magnitude suggests that the LEIP technique could be useful in a range of areas involving linear weak polyelectrolytes, allowing direct fitting of the relevant physical parameters to the experimental quantities.

15.
J Phys Chem A ; 121(31): 5894-5906, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28703587

ABSTRACT

The microspeciation of citric acid is studied by analyzing NMR titration data. When the site binding (SB) model, which assumes fully localized proton binding to the carboxylic groups, is used to obtain microscopic energy parameters (dissociation constants, pair and triplet interaction energies between charged carboxylate groups), contradictory results are obtained. The resulting macroscopic constants are in very good agreement with the values reported in the literature using potentiometry. However, the found pair interaction energy between the terminal carboxylates and the triplet interaction energy are physically meaningless. To solve this apparent contradiction, we consider the possibility of delocalized proton binding, so that the proton can be exchanged at high velocity in the NMR time scale through short, strong, low-barrier (SSLB) hydrogen bonds. With this aim, ab initio MP2 calculations using the SMD polarizable continuum model for the solvent were performed and the fully roto-microspeciation elucidated. First, fully localized proton binding was assumed, and the resulting microstate probabilities are in reasonable agreement with those reported in previous works that use selective blocking of the carboxylic groups. They are, however, in clear disagreement with the microstate probabilities derived from the NMR titration data, which predict, within a very narrow confidence interval, a unique microspecies for the symmetric di-ionized form. Moreover, counterintuitively, the interaction between terminal charged groups is much larger than that between central and terminal groups. As a consequence, we have explored the possibility of delocalized proton binding by calculating the energy of intermediate proton positions between two carbolxylic groups. The results reveal that the exchange of the proton through the hydrogen bonds is in some cases produced without energetic barrier. This effect is specially relevant in the di-ionized form, with all the most stable conformations forming a SSLB, which together would constitute the only microstate detected by NMR. An alternative reaction scheme for the ionization process, based on proton delocalization, is proposed.

16.
Colloids Surf B Biointerfaces ; 120: 200-7, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24916283

ABSTRACT

The design of 3D culture studies remains challenging due to the limited understanding of extracellular matrix (ECM)-dependent hindered diffusion and the lack of simple diffusivity assays. To address these limitations, we set up a cost-effective diffusivity assay based on a Transwell plate and the spectrophotometer of a Microplate Reader, which are readily accessible to cell biology groups. The spectrophotometer-based assay was used to assess the apparent diffusivity D of FITC-dextrans with molecular weight (4-70kDa) spanning the physiological range of signaling factors in a panel of acellular ECM gels including Matrigel, fibrin and type I collagen. Despite their technical differences, D data exhibited ∼15% relative difference with respect to FRAP measurements. Our results revealed that diffusion hindrance of small particles is controlled by the enhanced viscosity of the ECM gel in conformance with the Stokes-Einstein equation rather than by geometrical factors. Moreover, we provided a strong rationale that the enhanced ECM viscosity is largely contributed to by unassembled ECM macromolecules. We also reported that gels with the lowest D exhibited diffusion hindrance closest to the large physiologic hindrance of brain tissue, which has a typical pore size much smaller than ECM gels. Conversely, sparse gels (≤1mg/ml), which are extensively used in 3D cultures, failed to reproduce the hindered diffusion of tissues, thereby supporting that dense (but not sparse) ECM gels are suitable tissue surrogates in terms of macromolecular transport. Finally, the consequences of reduced diffusivity in terms of optimizing the design of 3D culture experiments were addressed in detail.


Subject(s)
Cell Culture Techniques/methods , Dextrans/chemistry , Extracellular Matrix/chemistry , Fluorescein-5-isothiocyanate/analogs & derivatives , Gels/chemistry , Spectrophotometry/methods , Diffusion , Fluorescein-5-isothiocyanate/chemistry , Fluorescence Recovery After Photobleaching , Microscopy, Atomic Force , Reproducibility of Results , Time Factors , Viscosity
17.
Math Biosci ; 251: 72-82, 2014 May.
Article in English | MEDLINE | ID: mdl-24680707

ABSTRACT

We perform Monte Carlo simulations in three-dimensional (3D) lattice in order to study diffusion-controlled and mixed activation-diffusion reactions following an irreversible Michaelis-Menten scheme in crowded media. The simulation data reveal the rate coefficient dependence on time for diffusion-controlled bimolecular reactions developing in three-dimensional media with obstacles, as predicted by fractal kinetics approach. For the cases of mixed activation-diffusion reactions, the fractality of the reaction decreases as the activation control increases. We propose a modified form of the Zipf-Mandelbrot equation to describe the time dependence of the rate coefficient, k(t)=k0(1+t/τ)(-)(h). This equation provides a good description of the fractal regime and it may be split into two terms: one that corresponds to the initial rate constant (k0) and the other one correlated with the kinetics fractality. Additionally, the proposed equation contains and links two limit expressions corresponding to short and large periods of time: k1=k0 (for t≪τ) that relates to classical kinetics and the well-known Kopelman's equation k∼t(-)(h) (for t≫τ) associated to fractal kinetics. The τ parameter has the meaning of a crossover time between these two limiting behaviours. The value of k0 is mainly dependent on the excluded volume and the enzyme-obstacle relative size. This dependence can be explained in terms of the radius of an average confined volume that every enzyme molecule feels, and correlates very well with the crossover length obtained in previous studies of enzyme diffusion in crowding media.


Subject(s)
Enzymes/metabolism , Models, Biological , Algorithms , Computer Simulation , Fractals , Kinetics , Mathematical Concepts , Monte Carlo Method
18.
J Phys Chem B ; 118(15): 4062-8, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24660904

ABSTRACT

Enzyme kinetics studies have been usually designed as dilute solution experiments, which differ substantially from in vivo conditions. However, cell cytosol is crowded with a high concentration of molecules having different shapes and sizes. The consequences of such crowding in enzymatic reactions remain unclear. The aim of the present study is to understand the effect of macromolecular crowding produced by dextran of different sizes and at diverse concentrations in the well-known reaction of oxidation of NADH by pyruvate catalyzed by L-lactate dehydrogenase (LDH). Our results indicate that the reaction rate is determined by both the occupied volume and the relative size of dextran obstacles with respect to the enzyme present in the reaction. Moreover, we analyzed the influence of macromolecular crowding on the Michaelis-Menten constants, vmax and Km. The obtained results show that only high concentrations and large sizes of dextran reduce both constants suggesting a mixed activation-diffusion control of this enzymatic reaction due to the dextran crowding action. From our knowledge, this is the first experimental study that depicts mixed activation-diffusion control in an enzymatic reaction due to the effect of crowding.


Subject(s)
L-Lactate Dehydrogenase/metabolism , NAD/metabolism , Pyruvic Acid/metabolism , Animals , Biocatalysis , Diffusion , Kinetics , L-Lactate Dehydrogenase/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Muscles/enzymology , NAD/chemistry , Oxidation-Reduction , Pyruvic Acid/chemistry , Rabbits
19.
Biophys Chem ; 185: 8-13, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24300113

ABSTRACT

The interior of the living cell is highly concentrated and structured with molecules that have different shapes and sizes. Almost all experimental biochemical data have been obtained working in dilute solutions, situations which do not reflect the in vivo conditions. The consequences of such crowding upon enzymatic reactions remain unclear. In this paper, we have studied and compared the initial velocity of the hydrolysis of N-succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-chymotrypsin, the oxidation of ABTS by H2O2 catalyzed by HRP and the oxidation of NADH in presence of pyruvate catalyzed by LDH. These reactions were chosen as model enzymatic processes occurring in different in vitro crowded media. The systems crowding has been built by introducing Dextran of several concentrations and sizes. Our results indicate that the volume occupied by the crowding agent, but not its size, plays an important role on the initial velocity of reactions involving tiny enzymes. However, the enzyme size is another important factor influencing the velocity of the reactions of large enzymes occurring in Dextran crowded media. In this situation, the reaction initial velocity depends on both occupied volume and dimension of the crowding agent that is present in the reaction media.


Subject(s)
Chymotrypsin/metabolism , Dextrans/metabolism , Horseradish Peroxidase/metabolism , L-Lactate Dehydrogenase/metabolism , Animals , Armoracia/enzymology , Cattle , Dextrans/analysis , Hydrogen Peroxide/metabolism , Hydrolysis , Kinetics , Models, Molecular , Rabbits , Solutions
20.
J Chem Phys ; 137(17): 174701, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23145736

ABSTRACT

Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of -0.035 C m(-2) to -0.28 C m(-2), were studied in NaCl and CaCl(2) salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na(+) and Ca(2+) ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.


Subject(s)
Electrons , Molecular Dynamics Simulation , Nanoparticles/chemistry , Calcium/chemistry , Hardness , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Salts/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...